Monday, January 14, 2013

X-ray emission from the Ultramassive Black Hole candidate NGC1277: implications and speculation on its origin. (arXiv:1301.1800v1 [astro-ph.CO])

X-ray emission from the Ultramassive Black Hole candidate NGC1277: implications and speculation on its origin. (arXiv:1301.1800v1 [astro-ph.CO]):
We study the X-ray emission from NGC1277, a galaxy in the core of the Perseus
cluster, for which van den Bosch et al. have recently claimed the presence of
an UltraMassive Black Hole (UMBH) of mass 1.7 times 10^10 Msun, unless the IMF
of the stars in the stellar bulge is extremely bottom heavy. The X-rays
originate in a power-law component of luminosity 1.3 times 10^40 erg/s embedded
in a 1 keV thermal minicorona which has a half-light radius of about 360 pc,
typical of many early-type galaxies in rich clusters of galaxies. If Bondi
accretion operated onto the UMBH from the minicorona with a radiative
efficiency of 10 per cent, then the object would appear as a quasar with
luminosity 10^46 erg/s, a factor of almost 10^6 times higher than observed. The
accretion flow must be highly radiatively inefficient, similar to past results
on M87 and NGC3115. The UMBH in NGC1277 is definitely not undergoing any
significant growth at the present epoch. We note that there are 3 UMBH
candidates in the Perseus cluster and that the inferred present mean mass
density in UMBH could be 10^5 Msun/Mpc^3, which is 20 to 30 per cent of the
estimated mean mass density of all black holes. We speculate on the implied
growth of UMBH and their hosts, and discuss the possibiity that extreme AGN
feedback could make all UMBH host galaxies have low stellar masses at redshifts
around 3. Only those which end up at the centres of groups and clusters later
accrete large stellar envelopes and become Brightest Cluster Galaxies. NGC1277
and the other Perseus core UMBH, NGC1270, have not however been able to gather
more stars or gas owing to their rapid orbital motion in the cluster core.

No comments:

Post a Comment