Monday, January 14, 2013

Observations of Feedback from Radio-Quiet Quasars: I. Extents and Morphologies of Ionized Gas Nebulae. (arXiv:1301.1677v1 [astro-ph.CO])

Observations of Feedback from Radio-Quiet Quasars: I. Extents and Morphologies of Ionized Gas Nebulae. (arXiv:1301.1677v1 [astro-ph.CO]):
Black hole feedback -- the strong interaction between the energy output of
supermassive black holes and their surrounding environments -- is routinely
invoked to explain the absence of overly luminous galaxies, the black hole vs.
bulge correlations and the similarity of black hole accretion and star
formation histories. Yet direct probes of this process in action are scarce and
limited to small samples of active nuclei. We present Gemini IFU observations
of the distribution of ionized gas around luminous, obscured, radio-quiet (RQ)
quasars at z~0.5. We detect extended ionized gas nebulae via [O III]5007
emission in every case, with a mean diameter of 28 kpc. These nebulae are
nearly perfectly round. The regular morphologies of nebulae around RQ quasars
are in striking contrast with lumpy or elongated nebulae seen around radio
galaxies at low and high redshifts. We present the uniformly measured
size-luminosity relationship of [O III] nebulae around Seyfert 2 galaxies and
type 2 quasars spanning 6 orders of magnitude in luminosity and confirm the
flat slope of the correlation (R ~ L^{0.25+/-0.02}). We find a universal
behavior of the [O III]/H-beta ratio in our entire RQ quasar sample: it
persists at a constant value (~10) in the central regions, until reaching a
"break" isophotal radius ranging from 4 to 11 kpc where it starts to decrease.
We propose a model of clumpy nebulae in which clouds that produce line emission
transition from being ionization-bounded at small distances from the quasar to
being matter-bounded in the outer parts of the nebula, which qualitatively
explains the observed line ratio and surface brightness profiles. It is
striking that we see such smooth and round large-scale gas nebulosities in this
sample, which are inconsistent with illuminated merger debris and which we
suggest may be the signature of accretion energy from the nucleus reaching gas
at large scales.

No comments:

Post a Comment