X-Ray Determination of the Variable Rate of Mass Accretion onto TW Hydrae. (arXiv:1211.1710v1 [astro-ph.SR]):
Diagnostics of electron temperature (T_e), electron density (n_e), and
hydrogen column density (N_H) from the Chandra High Energy Transmission Grating
spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a
classical accretion model, allow us to infer the accretion rate onto the star
directly from measurements of the accreting material. The new method introduces
the use of the absorption of Ne IX lines as a measure of the column density of
the intervening, accreting material. On average, the derived mass accretion
rate for TW Hya is 1.5 x 10^{-9} M_{\odot} yr^{-1}, for a stellar magnetic
field strength of 600 Gauss and a filling factor of 3.5%. Three individual
Chandra exposures show statistically significant differences in the Ne IX line
ratios, indicating changes in N_H, T_e, and n_e by factors of 0.28, 1.6, and
1.3, respectively. In exposures separated by 2.7 days, the observations
reported here suggest a five-fold reduction in the accretion rate. This
powerful new technique promises to substantially improve our understanding of
the accretion process in young stars.
No comments:
Post a Comment