Sunday, February 17, 2013

A coordinated optical and X-ray spectroscopic campaign on HD179949: searching for planet-induced chromospheric and coronal activity. (arXiv:1301.7748v1 [astro-ph.SR])

A coordinated optical and X-ray spectroscopic campaign on HD179949: searching for planet-induced chromospheric and coronal activity. (arXiv:1301.7748v1 [astro-ph.SR]):
HD179949 is an F8V star, orbited by a close-in giant planet with a period of
~3 days. Previous studies suggested that the planet enhances the magnetic
activity of the parent star, producing a chromospheric hot spot which rotates
in phase with the planet orbit. However, this phenomenon is intermittent since
it was observed in several but not all seasons. A long-term monitoring of the
magnetic activity of HD179949 is required to study the amplitude and time
scales of star-planet interactions. In 2009 we performed a simultaneous optical
and X-ray spectroscopic campaign to monitor the magnetic activity of HD179949
during ~5 orbital periods and ~2 stellar rotations. We analyzed the CaII H&K
lines as a proxy for chromospheric activity, and we studied the X-ray emission
in search of flux modulations and to determine basic properties of the coronal
plasma. A detailed analysis of the flux in the cores of the CaII H&K lines and
a similar study of the X-ray photometry shows evidence of source variability,
including one flare. The analysis of the the time series of chromospheric data
indicates a modulation with a ~11 days period, compatible with the stellar
rotation period at high latitudes. Instead, the X-ray light curve suggests a
signal with a period of ~4 days, consistent with the presence of two active
regions on opposite hemispheres. The observed variability can be explained,
most likely, as due to rotational modulation and to intrinsic evolution of
chromospheric and coronal activity. There is no clear signature related to the
orbital motion of the planet, but the possibility that just a fraction of the
chromospheric and coronal variability is modulated with the orbital period of
the planet, or the stellar-planet beat period, cannot be excluded. We conclude
that any effect due to the presence of the planet is difficult to disentangle.

No comments:

Post a Comment