Monday, October 15, 2012

Thermal and non-thermal traces of AGN feedback: results from cosmological AMR simulations. (arXiv:1210.3541v1 [astro-ph.CO])

Thermal and non-thermal traces of AGN feedback: results from cosmological AMR simulations. (arXiv:1210.3541v1 [astro-ph.CO]):
We investigate the observable effects of feedback from Active Galactic Nuclei
(AGN) on non-thermal components of the intracluster medium (ICM). We have
modelled feedback from AGN in cosmological simulations with the adaptive mesh
refinement code ENZO, investigating three types of feedback that are sometimes
called quasar, jet and radio mode. Using a small set of galaxy clusters
simulated at high resolution, we model the injection and evolution of Cosmic
Rays, as well as their effects on the thermal plasma. By comparing, both, the
profiles of thermal gas to observed profiles from the ACCEPT sample, and the
secondary gamma-ray emission to the available upper limits from FERMI, we
discuss how the combined analysis of these two observables can constrain the
energetics and mechanisms of feedback models in clusters. Those modes of AGN
feedback that provide a good match to X-ray observations, yield a gamma-ray
luminosity resulting from secondary cosmic rays that is about below the
available upper limits from FERMI. Moreover, we investigate the injection of
turbulent motions into the ICM from AGN, and the detectability of these motions
via the analysis of line broadening of the Fe XXIII line. In the near future,
deeper observations/upper-limits of non-thermal emissions from galaxy clusters
will yield stringent constraints on the energetics and modes of AGN feedback,
even at early cosmic epochs.

No comments:

Post a Comment